隨著新能源車需求的持續(xù)增長(zhǎng),鋰電池在新能源汽車行業(yè)的應(yīng)用前景廣闊。目前鋰電池包括硬殼和軟包電池,硬殼則可分為圓柱電池和方形電池。其中方形電池憑借其充放電倍率、循環(huán)壽命、安全性等方面的優(yōu)勢(shì),成為一種主流的電池封裝應(yīng)用。
方形電池工藝鏈
鋰電池工藝鏈分為前、中、后三段,以方形電池為例,其工藝鏈中存在大量的質(zhì)檢需求,傳統(tǒng)視覺檢測(cè)可滿足各工藝環(huán)節(jié)的定位和糾偏應(yīng)用。
而在極片、焊縫、絕緣隔膜等需要檢測(cè)表面缺陷的工序中,傳統(tǒng)視覺檢測(cè)的精度受缺陷形態(tài)影響,通過針對(duì)性調(diào)參后,易消耗過多的內(nèi)部資源,效果可能仍無法達(dá)到預(yù)期。因此,對(duì)鋰電行業(yè)內(nèi)的缺陷檢測(cè)引入深度學(xué)習(xí)算法,使用一定量缺陷樣本來訓(xùn)練生成AI模型,讓AI來判斷缺陷和位置,可達(dá)到較不不檢測(cè)效果。
VM算法開發(fā)平臺(tái)作為???/a>機(jī)器人與多家企業(yè)合作,基于VM算法開發(fā)平臺(tái),構(gòu)建持續(xù)、高效、開放的生態(tài)合作圈。今天我們就為大家分享四則合作伙伴運(yùn)用VM圖像分割完成的缺陷檢測(cè)案例。
部分劃痕與極片灰度值相近,輪廓不明顯;缺陷形態(tài)豐富,同時(shí)需準(zhǔn)確完成多分類任務(wù);耗時(shí)要求嚴(yán)格。
在工藝中段的頂蓋焊接環(huán)節(jié)中,需檢測(cè)方形電池殼體周圍的激光焊印,如是否存在虛焊、漏焊、斷焊、爆點(diǎn)等缺陷,以評(píng)估焊接質(zhì)量。
缺陷形態(tài)豐富,難以界定其形態(tài)邊緣;檢測(cè)區(qū)移動(dòng)頻繁,缺陷位置具有隨機(jī)性;部分小缺陷混雜于焊灰或清洗圈中,需準(zhǔn)確識(shí)別。
需檢出個(gè)位像素級(jí)別的小缺陷;缺陷與正常的灰塵、凸起反光征基本一致;超大分辨率樣本,對(duì)耗時(shí)與顯存占用提出挑戰(zhàn)。
廣州艾韋迅科技是??低暺煜碌?a href="http://m.diancijiareqi.com/HIKROBOT/" target="_blank" title="海康機(jī)器人HikRobot??抵悄茏x碼器/工業(yè)相機(jī)">海康機(jī)器人HikRobot??抵悄茏x碼器/工業(yè)相機(jī)經(jīng)銷商,供應(yīng)??祾呙铇孖D2000、ID3000、ID5000、ID6000等系列全部型號(hào),??低曌x碼器同時(shí)為 為電子、物流、FPD顯示屏、半導(dǎo)體、汽車制造等領(lǐng)域提供專業(yè)機(jī)器視覺解決方案,???a href="http://m.diancijiareqi.com/tiaoma_dutou/" target="_blank" >工業(yè)讀碼器助力用戶快速準(zhǔn)確實(shí)現(xiàn)工業(yè)自動(dòng)化。